How to remove a column in Pandas

In this article, you’ll learn how to remove a column in Pandas. I will give three different examples that will help you to understand how to remove columns.

  • Remove a single column in Pandas
  • Remove multiple columns in Pandas
  • Remove columns from the dataset

Example 1: Remove a single column in Pandas

# Import the Pandas library as pd
import pandas as pd

# Initialize a data in the form of dictionary
data = {'Names':['John', 'Harry', 'Ahmad', 'Ali'],
        'CGPA':[3.5, 4.0, 3.0, 4.0],
        'Age':[25, 31, 23, 28]}

# Convert data into Pandas DataFrame
df = pd.DataFrame(data)

# Display the Original DataFrame
print(df)

# Remove a Single Column
df1 = df.drop(['CGPA'], axis=1)

# Display a new DataFrame df1
print(df1)

Output:

   Names  CGPA  Age
0   John   3.5   25
1  Harry   4.0   31
2  Ahmad   3.0   23
3    Ali   4.0   28
   Names  Age
0   John   25
1  Harry   31
2  Ahmad   23
3    Ali   28

Example 2: Remove multiple columns in Pandas

# Import the Pandas library as pd
import pandas as pd

# Initialize a data in the form of dictionary
data = {'Names':['John', 'Harry', 'Ahmad', 'Ali'],
        'CGPA':[3.5, 4.0, 3.0, 4.0],
        'Age':[25, 31, 23, 28]}

# Convert data into Pandas DataFrame
df = pd.DataFrame(data)

# Display the Original DataFrame
print(df)

# Remove Multiple Columns and save results in the same variable using inplace
df.drop(['CGPA','Age'], axis=1, inplace = True)

# Display DataFrame df after modification
print(df)

Output:

   Names  CGPA  Age
0   John   3.5   25
1  Harry   4.0   31
2  Ahmad   3.0   23
3    Ali   4.0   28
   Names
0   John
1  Harry
2  Ahmad
3    Ali

Example 3: Remove columns from the dataset

# Import the Pandas library as pd
import pandas as pd

# Read the CSV file as Pandas DataFrame
df = pd.read_csv("weather.csv")

# Display the Original DataFrame
print(df)

# Drop a single column and changes applied to original dataframe using inplace
df.drop(['min_temp'], axis = 1, inplace = True)

# Display the DataFrame after modification
print(df)

Output:

           date  min_temp  max_temp
0    01/01/2013      29.8      15.2
1    02/01/2013      32.1      16.8
2    03/01/2013      34.3      18.5
3    04/01/2013      33.1      17.6
4    05/01/2013      31.5      14.6
..          ...       ...       ...
408  13/02/2014      31.5      24.3
409  14/02/2014      31.2      24.5
410  15/02/2014      31.7      25.0
411  16/02/2014      33.5      24.4
412  17/02/2014      29.1      25.0

[413 rows x 3 columns]
           date  max_temp
0    01/01/2013      15.2
1    02/01/2013      16.8
2    03/01/2013      18.5
3    04/01/2013      17.6
4    05/01/2013      14.6
..          ...       ...
408  13/02/2014      24.3
409  14/02/2014      24.5
410  15/02/2014      25.0
411  16/02/2014      24.4
412  17/02/2014      25.0

[413 rows x 2 columns]

If you want to learn Pandas, I will recommend this book and free resource.

Leave a Comment

Your email address will not be published.