You can drop duplicates in Pandas with the following code. I highly recommend you This book to learn Python. In this article, You will see 3 examples to drop duplicates in Pandas.
Step 1: Install Pandas Library
Install the Pandas library using this code, if it is not installed.
pip install pandas
Example 1: Drop all duplicates from the DataFrame
# Import the Pandas library as pd
import pandas as pd
# Initialize a dictionary
dict = {'Students':['John', 'Harry', 'John', 'Chris'],
'Scores':[84, 73, 84, 84],
'Values':[84, 75, 84, 84]}
# Create DataFrame from dictionary
df = pd.DataFrame(dict)
# Display the DataFrame
print(df)
# Drop duplicates from DataFrame
df = df.drop_duplicates()
# Display the DataFrame
print(df)Output:
Students Scores Values 0 John 84 84 1 Harry 73 75 2 John 84 84 3 Chris 84 84 Students Scores Values 0 John 84 84 1 Harry 73 75 3 Chris 84 84
Example 2: Drop all duplicates from a specific column
# Import the Pandas library as pd
import pandas as pd
# Initialize a dictionary
dict = {'Students':['John', 'Harry', 'John', 'Chris'],
'Scores':[85, 73, 84, 86],
'Values':[91, 75, 84, 91]}
# Create DataFrame from dictionary
df = pd.DataFrame(dict)
# Display the DataFrame
print(df)
# Drop duplicates from the specific Column
df = df.drop_duplicates(subset = "Values")
# Display the DataFrame
print(df)Output:
Students Scores Values 0 John 85 91 1 Harry 73 75 2 John 84 84 3 Chris 86 91 Students Scores Values 0 John 85 91 1 Harry 73 75 2 John 84 84
Example 3: Drop all duplicate pairs from the DataFrame
# Import the Pandas library as pd
import pandas as pd
# Initialize a dictionary
dict = {'Students':['John', 'Harry', 'John', 'Chris'],
'Scores':[67, 67, 88, 87],
'Values':[65, 65, 89, 88]}
# Create DataFrame from dictionary
df = pd.DataFrame(dict)
# Display the DataFrame
print(df)
# Drop duplicates that are common in these two columns
df = df.drop_duplicates(subset = ["Scores", "Values"])
# Display the DataFrame
print(df)Output:
Students Scores Values 0 John 67 65 1 Harry 67 65 2 John 88 89 3 Chris 87 88 Students Scores Values 0 John 67 65 2 John 88 89 3 Chris 87 88


