How to delete all rows in Pandas DataFrame

In this article, you’ll learn how to delete all rows in Pandas DataFrame. The given examples with the solutions will help you to delete all the rows of Pandas DataFrame.

Method 1: Delete all rows of Pandas DataFrame

# Import the required libaries
import pandas as pd

# Create a DataFrame
df = pd.DataFrame({'col_1': [30, 83, 89, 91],
                   'col_2': [30, 38, 28, 28],
                   'col_3': [39, 86, 18, 23]})

# Display the DataFrame
print(df)

# Delete all the Rows
df = df[0:0]

# Display the Modified DataFrame
print(df)

Output:

   col_1  col_2  col_3
0     30     30     39
1     83     38     86
2     89     28     18
3     91     28     23
Empty DataFrame
Columns: [col_1, col_2, col_3]
Index: []

Method 2:

# Import the required libaries
import pandas as pd

# Create a DataFrame
df = pd.DataFrame({'col_1': [30, 83, 89, 91],
                    'col_2': [30, 38, 28, 28],
                    'col_3': [39, 86, 18, 23]})

# Display the DataFrame
print(df)

# Delete all the Rows
df.drop(df.index,inplace=True) 

# Display the Modified DataFrame
print(df)

Output:

   col_1  col_2  col_3
0     30     30     39
1     83     38     86
2     89     28     18
3     91     28     23
Empty DataFrame
Columns: [col_1, col_2, col_3]
Index: []

Example: Delete all rows of the Dataset

# Import the required libaries
import pandas as pd

# Create a DataFrame
df = pd.read_csv("weather.csv")

# Display the DataFrame
print(df.head())

# Delete all the Rows
df = df[0:0]

# Display the Modified DataFrame
print(df)

Output:

         date  min_temp  max_temp
0  01/01/2013      29.8      15.2
1  02/01/2013      32.1      16.8
2  03/01/2013      34.3      18.5
3  04/01/2013      33.1      17.6
4  05/01/2013      31.5      14.6
Empty DataFrame
Columns: [date, min_temp, max_temp]
Index: []

If you want to learn Pandas, I recommend this book and free resource.

Leave a Comment

Your email address will not be published.